NINETY-SIXTH INTERNATIONAL ATLANTIC ECONOMIC CONFERENCE PRESIDENTIAL ADDRESS Harald Uhlig PRESIDENT INTERNATIONAL ATLANTIC ECONOMIC SOCIETY "On Digital Currencies" 5-8 OCTOBER 2023

This talk:

- Theory of Cryptocurrency Pricing: Schilling-Uhlig, "Some Simple Bitcoin Economics", JME 2019.
- Central bank digital currencies: Schilling Fernández-Villaverde
 Uhlig, "CBDC: when Price and Bank Stability Collide", WP.

Satoshi Nakamoto (2008), "Bitcoin: A Peer-to-Peer Electronic Cash System."

The Origin

Bitcoin Quantity and Price, 2009-01-09 to 2023-09-26

Source: https://www.blockchain.com/charts/total-bitcoins

Schilling - Uhlig, "Some Simple Bitcoin Economics" Key Questions:

- What determines the Bitcoin price? P > NPV(Dividends) = 0.?
- ② Can Bitcoin serve as medium of exchange, despite price volatility?
- What are monetary policy implications?

Key Insights:

- A novel model of an endowment economy with two intrinsically worthless currencies (Dollar, Bitcoin) as medium of exchange.
- Fundamental pricing equation". Special case: Bitcoin price is martingale.
 - KAREKEN AND WALLACE (1981)
 - MANUELLI AND PECK (1990)
- In the speculation of the orem.
- **Over the set of the s**
- Monetary policy implications:
 - Bitcoin block rewards are not a tax on Bitcoin holders: they are financed with a Dollar tax.

The Schilling - Uhlig (2019) model

- Time: discrete, infinite $t = 0, 1, 2, \dots$
- Randomness: θ_t , at beginning of period. History: θ^t .
- One perishable consumption good per period.
- Two monies: Bitcoins B_t and Dollars D_t (aggregates).
- A central bank steers quantity of Dollars per lump sum transfers: $D_{t+1} = D_t + \tau_{t+1}, \ \tau_{t+1} \in \mathbb{R}$. Goal: exogenous price path P_t .
- Bitcoin quantity: deterministic $B_{t+1} = B_t + A_t, A_t \ge 0$ (endowment or "mining")
- *P_t* price of consumption good in \$: exogenous.
- $Q_t = Q(\theta^t)$ price of Bitcoins in \$: endogenous.
- Two types of agents: "red" and "green". "Red" agents consume in odd periods and have endowments in even periods. "Green" agents other way around.
- Goods are traded for monies. Agents do not need to spend all money ("hodlers") or accept all money. But: "No speculation" result: they will!

The Fundamental Pricing Equation

Compare to Kareken-Wallace (1981), Manuelli-Peck (1990)

Proposition 1

Assume agents use both Dollars **and** Bitcoins to buy goods at t and t + 1. Then

$$\mathbb{E}_t \left[u'(c_{t+1}) \frac{P_t}{P_{t+1}} \right] = \mathbb{E}_t \left[\left(u'(c_{t+1}) \frac{P_t}{P_{t+1}} \right) \frac{Q_{t+1}}{Q_t} \right]$$
(1)

If production (consumption) is constant at t + 1 or if agents are risk-neutral, and if further Q_{t+1} and $1/\pi_{t+1}$ are conditionally uncorrelated, then **the Bitcoin price** Q_t **in Dollar is a martingale**,

$$Q_t = E_t[Q_{t+1}]$$

Bitcoin block rewards are financed by Dollar taxes

Consider two economies, which differ in the growth paths for the Bitcoin quantity.

- The central bank seeks to achieve the same path for prices.
- Quantity theory:

$$P_t y_t = D_t + Q_t B_t$$

- More Bitcoins *B_t* means less *D_t*, keeping everything else the same.
- Same equilibrium can obtain, otherwise.

S-FV-U, "CBDC: When Price & Bank Stability Collide"

In our model: Only HH, CB, projects. CB is financial intermediary.

Key Mechanism

- Nominal Diamond-Dybvig (1983) model for a CB and its CBDC.
- Central bank can always deliver on its nominal obligations.
- But: CB runs can happen: "spending run" on available goods.

Three competing objectives:

- Traditional CB objective: commitment to Price Stability
- Social optimum, optimal risk sharing: Efficiency
- Absence of runs, financial stability: Monetary Trust

Key Result:

Of the three objectives, the central bank can only achieve two.

The model: the real portion is Diamond-Dybvid, 1983

- time t = 0, 1, 2.
- Continuum [0, 1] of agents:
 - t = 0: symmetric, endowed with one unit of a real good
 - t = 1: types reveal: "impatient" λ, "patient" 1 − λ. Impatient agents: have to consume in t = 1.
 - ► $u(\cdot)$ strictly increasing, concave, RRA greater than one, $-x \cdot u''(x)/u'(x) > 1.$
- Real Technology:
 - long term: $1 \rightarrow 1 \rightarrow R$
 - storage $t = 1 \rightarrow t = 2$, available to all: $1 \rightarrow 1$
- Optimal solution:

 $\max \lambda u(x_1) + (1-\lambda)u(x_2)$ s.t. $\lambda x_1 + (1-\lambda)\frac{x_2}{R} = 1$

Unique solution, where $u'(x_1^*) = Ru'(x_2^*)$

• With that: $x_1^* > 1$. (Diamond and Dybvig, 1983)

The model: the nominal portion introduces CBDC.

- t = 0: Agents sell goods to CB for M CBDC units in t = 1.
 - CB: invests all received real goods in projects.
- Agents learn type. Impatient agents spend M. Patient agents may. Total fraction: $\lambda \le n \le 1$.
 - CB observes agg. spending fraction n.
 - CB liquidates fraction $y = y(n) \in [0, 1]$ of projects.
 - CB sells goods y. Market clearing price P₁.
- t = 2: Remaining agents spend (1 + i(n))M.
 - CB sells remaining project payoffs R(1-y)
 - Market clearing price P_2 .

Definition 1

A central bank policy is a triple $(M, y(\cdot), i(\cdot))$, where $y : [0, 1] \rightarrow [0, 1]$ is the central bank's liquidation policy for every observed fraction n of spending agents, and $i : [0, 1] \rightarrow [-1, \infty)$ is the nominal interest rate policy.

A (boring) example for a central bank policy

Set *M* so that $P_1 = 1$ clears the market, if $n = \lambda$ agents spend in t = 1.

Market Clearing $nM = P_1y(n)$ $(1-n)(1+i(n))M = P_2R(1-y(n)),$

 $\Rightarrow n, y(n), i(n)$ pin down the price levels P_1, P_2 .

$$P_1(n) = \frac{nM}{y(n)}$$
 and $P_2(n) = \frac{(1-n)(1+i(n))M}{R(1-y(n))}$

Note: $P_2(n)$ can be "anything" per i(n), but i(n) does not affect $P_1(n)$. **Real allocation: only depends on** n **via** y(n):

$$x_1(n) = rac{M}{P_1} = rac{y(n)}{n}$$
 and $x_2(n) = rac{(1+i(n))M}{P_2} = rac{1-y(n)}{1-n}R$

Given *n*, patient agents run iff $x_1(n) \ge x_2(n)$.

Objective 2: Optimal Risk Sharing

The social optimum (x_1^*, x_2^*) is an equilibrium, if $y(\lambda) = y^* = \lambda x_1^*$.

Objective 3: Absence of Runs A Run on the Central Bank is a Spending Run:

Definition 2

A **run** occurs if $n > \lambda$: patient agents also spend.

CBDC looses its 'store of value' function.

- Patient agents purchase goods instantaneously even though they do not need to consume
- Enable future consumption by storing toilet paper and other goods at home rather than storing value in form of CBDC
- Trust in monetary system and CBDC evaporates.
- Monetary instability.
- Compare to:
 - temporary pandemic stockouts.
 - hyperinflations.
 - currency crises.

t=0

Run-Proof Policies

The policy is "run-proof", if $n \neq \lambda$ is "off equilibrium", i.e. if $x_1(n) < x_2(n)$ for all n, i.e. $y(n) < \overline{y}(n) = nR/(1 + n(R - 1))$.

- These two policies violate the price stability objective for $P_1(n)$.
- The problem only arises "off equilibrium."
- Commitment-issue / credibility / sub-game perfection: should $n \neq \lambda$ arise, a price-stability oriented Central Bank may not stick to the "threat" of letting the price P_1 move far from the target.
- Remark: objective for $P_2(n)$ can always be achieved via i(n).

Objective 1: Price Stability

Definition 3

- A central bank policy is **fully price stable**, if it achieves $P_1(n) \equiv \overline{P}$ for all *n*.
- **2** A central bank policy is **partially price stable**, if it achieves **either** $P_1(n) = \overline{P}$ or there is full liquidation, y(n) = 1, for all *n*.

(In the paper: extend to period 2, pick the right interest rate policy.) Recall Market Clearing:

Therefore,

p

$$P_1(n) = rac{nM}{y(n)}$$

fully price stable: $y(n) = rac{nM}{ar{P}}$
partially price stable: $y(n) = \min\{rac{nM}{ar{P}}\}$

- Prices are fully stable and runs are avoided on green line.
- But: no longer efficient at $n = \lambda$!
- At best: green line = 45 degree line.

Prices partially stable and efficiency on blue line.

• But: no longer run-proof. Runs may happen!

Conclusions

Two papers

- Theory of Cryptocurrency Pricing: Schilling-Uhlig, "Some Simple Bitcoin Economics", JME 2019.
- Central bank digital currencies: Schilling Fernández-Villaverde - Uhlig, "CBDC: when Price and Bank Stability Collide".

... but a lot more can and should be done! Wide-open canvas.

NINETY-SIXTH INTERNATIONAL ATLANTIC ECONOMIC CONFERENCE

5-8 OCTOBER 2023

