NINETY-SIXTH INTERNATIONAL **ATLANTIC ECONOMIC CONFERENCE PRESIDENTIAL ADDRESS Harald Uhlig PRESIDENT INTERNATIONAL ATLANTIC ECONOMIC SOCIETY** "On Digital Currencies" 5-8 OCTOBER 2023

¹ Theory of Cryptocurrency Pricing: **Schilling-Uhlig, "Some Simple Bitcoin Economics", JME 2019.**

² Central bank digital currencies: **Schilling - Fernández-Villaverde - Uhlig, "CBDC: when Price and Bank Stability Collide", WP.**

This talk:

Satoshi Nakamoto (2008), "Bitcoin: A Peer-to-Peer Electronic Cash System."

The Origin

Bitcoin Quantity and Price, 2009-01-09 to 2023-09-26

Source: https://www.blockchain.com/charts/total-bitcoins

Schilling - Uhlig, "Some Simple Bitcoin Economics" **Key Questions:**

- \bullet What determines the Bitcoin price? $P > NPV(Dividends) = 0.2$
- 2 Can Bitcoin serve as medium of exchange, despite price volatility?
- ³ What are monetary policy implications?

Key Insights:

- ¹ A **novel model** of an endowment economy with two intrinsically worthless currencies (Dollar, Bitcoin) as medium of exchange.
- ² "Fundamental pricing equation". Special case: **Bitcoin price is martingale**.
	- **KAREKEN AND WALLACE (1981)**
	- MANUELLI AND PECK (1990)
- ³ **"No speculation" theorem**.
- ⁴ **Volatility does not invalidate medium-of-exchange function.**
- ⁵ **Monetary policy implications:**
	- **Bitcoin block rewards are** not a tax on Bitcoin holders: they are **financed with a Dollar tax**.

The Schilling - Uhlig (2019) model

- Time: discrete, infinite $t = 0, 1, 2, \ldots$
- Randomness: θ_t , at beginning of period. History: θ^t .
- One perishable consumption good per period.
- \bullet Two monies: Bitcoins B_t and Dollars D_t (aggregates).
- A central bank steers quantity of Dollars per lump sum transfers: $D_{t+1} = D_t + \tau_{t+1}, \tau_{t+1} \in \mathbb{R}$. Goal: exogenous price path P_t .
- **•** Bitcoin quantity: deterministic $B_{t+1} = B_t + A_t$, $A_t \geq 0$ (endowment or "mining")
- \bullet P_t price of consumption good in \$: exogenous.
- $Q_t=Q(\theta^t)$ price of Bitcoins in \$: **endogenous**.
- Two types of agents: "red" and "green". "Red" agents consume in odd periods and have endowments in even periods. "Green" agents other way around.
- Goods are traded for monies. Agents do not need to spend all money ("hodlers") or accept all money. **But:** "No speculation" result: they will!

The Fundamental Pricing Equation

Compare to Kareken-Wallace (1981), Manuelli-Peck (1990)

Proposition 1

Assume agents use both Dollars **and** Bitcoins to buy goods at t and $t + 1$. Then

$$
\mathbb{E}_t\left[u'(c_{t+1})\frac{P_t}{P_{t+1}}\right] = \mathbb{E}_t\left[\left(u'(c_{t+1})\frac{P_t}{P_{t+1}}\right)\frac{Q_{t+1}}{Q_t}\right]
$$
(1)

If production (consumption) is constant at $t + 1$ or if agents are risk-neutral, and if further Q_{t+1} and $1/\pi_{t+1}$ are conditionally uncorrelated, then **the Bitcoin price** Q_t **in Dollar is a martingale,**

$$
Q_t = E_t[Q_{t+1}]
$$

Bitcoin block rewards are financed by Dollar taxes

Consider two economies, which differ in the growth paths for the Bitcoin quantity.

- The central bank seeks to achieve the same path for prices.
- Quantity theory:

$$
P_t y_t = D_t + Q_t B_t
$$

- More Bitcoins B_t means less $D_t,$ keeping everything else the same.
- Same equilibrium can obtain, otherwise.

S-FV-U, "CBDC: When Price & Bank Stability Collide"

In our model: Only HH, CB, projects. CB is financial intermediary.

Key Mechanism

- Nominal Diamond-Dybvig (1983) model for a CB and its CBDC.
- Central bank can always deliver on its nominal obligations.
- But: CB runs can happen: "spending run" on available goods.

Three competing objectives:

- ¹ Traditional CB objective: commitment to **Price Stability**
- ² Social optimum, optimal risk sharing: **Efficiency**
- ³ Absence of runs, financial stability: **Monetary Trust**

Key Result: CBDC Trilemma

Of the three objectives, the central bank can only achieve two.

The model: the real portion is Diamond-Dybvid, 1983

- time $t = 0, 1, 2$.
- \bullet Continuum $[0, 1]$ of agents:
	- \blacktriangleright $t = 0$: symmetric, endowed with one unit of a real good
	- \blacktriangleright t = 1: types reveal: "impatient" λ , "patient" 1λ . Impatient agents: have to consume in $t = 1$.
	- $\blacktriangleright u(\cdot)$ strictly increasing, concave, RRA greater than one, $-x \cdot u''(x)/u'(x) > 1.$
- Real Technology:
	- long term: $1 \rightarrow 1 \rightarrow R$
	- Storage $t = 1 \rightarrow t = 2$, available to all: $1 \rightarrow 1$
- **Optimal solution**:

 $\max \lambda u(x_1) + (1-\lambda)u(x_2)$ s.t. $\lambda x_1 + (1-\lambda)\frac{x_2}{R}$ $\frac{Z}{R} = 1$

Unique solution, where $u'(x_1^*) = Ru'(x_2^*)$

With that: $x_1^* > 1$. (Diamond and Dybvig, 1983)

The model: the nominal portion introduces CBDC.

- $t = 0$: \bullet Agents sell goods to CB for M CBDC units in $t = 1$. CB: invests all received real goods in projects.
- $t = 1$: \bullet Agents learn type. Impatient agents spend M. Patient agents may. Total fraction: $\lambda \leq n \leq 1$.
	- CB **observes agg. spending fraction** n**.**
	- CB liquidates fraction $y = y(n) \in [0, 1]$ of projects.
	- CB sells goods y. Market clearing price P_1 .
- $t = 2$: **•** Remaining agents spend $(1 + i(n))M$.
	- CB sells remaining project payoffs $R(1 y)$
	- Market clearing price P_2 .

Definition 1

A **central bank policy** is a triple $(M, y(\cdot), i(\cdot))$, where $y : [0, 1] \rightarrow [0, 1]$ is the central bank's liquidation policy for every observed fraction n of spending agents, and $i : [0, 1] \rightarrow [-1, \infty)$ is the nominal interest rate policy.

A (boring) example for a central bank policy

Set M so that $P_1 = 1$ clears the market, if $n = \lambda$ agents spend in $t = 1$.

Market Clearing $nM = P_1y(n)$ $(1 - n)(1 + i(n))M = P_2R(1 - y(n)),$

 \Rightarrow n, $y(n)$, $i(n)$ pin down the price levels P_1, P_2 .

$$
P_1(n) = \frac{nM}{y(n)} \quad \text{ and } \quad P_2(n) = \frac{(1-n)(1+i(n))M}{R(1-y(n))}
$$

Note: $P_2(n)$ can be "anything" per $i(n)$, but $i(n)$ does not affect $P_1(n)$. **Real allocation: only depends on** n **via** $y(n)$:

$$
x_1(n) = \frac{M}{P_1} = \frac{y(n)}{n}
$$
 and $x_2(n) = \frac{(1 + i(n))M}{P_2} = \frac{1 - y(n)}{1 - n}R$

Given n, patient agents run iff $x_1(n) \ge x_2(n)$.

Objective 2: Optimal Risk Sharing

The social optimum (x_1^*, x_2^*) is an equilibrium, if $y(\lambda) = y^* = \lambda x_1^*$.

Objective 3: Absence of Runs **A Run on the Central Bank is a Spending Run:**

Definition 2

A run occurs if $n > \lambda$: patient agents also spend.

CBDC looses its 'store of value' function.

- Patient agents purchase goods instantaneously even though they do not need to consume
- Enable future consumption by storing toilet paper and other goods at home rather than storing value in form of CBDC
- Trust in monetary system and CBDC evaporates.
- Monetary instability.
- Compare to:
	- \blacktriangleright temporary pandemic stockouts.
	- \blacktriangleright hyperinflations.
	- \blacktriangleright currency crises.

Run-Proof Policies

The policy is "run-proof", if $n \neq \lambda$ is "off equilibrium", i.e. if $x_1(n) < x_2(n)$ for all n, i.e. $y(n) < \bar{y}(n) = nR/(1 + n(R - 1)).$

18 / 23

- These two policies violate the price stability objective for $P_1(n)$.
- The problem only arises "off equilibrium."
- Commitment-issue / credibility / sub-game perfection: should $n \neq \lambda$ arise, a price-stability oriented Central Bank may not stick to the "threat" of letting the price P_1 move far from the target.
- Remark: objective for $P_2(n)$ can always be achieved via $i(n)$.

Objective 1: Price Stability

Definition 3

- **1** A central bank policy is **fully price stable**, if it achieves $P_1(n) \equiv \overline{P}$ for all n .
- ² A central bank policy is **partially price stable**, if it achieves **either** $P_1(n) = \overline{P}$ or there is full liquidation, $y(n) = 1$, for all n.

(In the paper: extend to period 2, pick the right interest rate policy.) Recall Market Clearing:

Therefore,

$$
P_1(n) = \frac{nM}{y(n)}
$$

fully price stable: $y(n) = \frac{nM}{\bar{P}}$
partially price stable: $y(n) = \min\{\frac{nM}{\bar{P}}\}$

- Prices are fully stable and runs are avoided on green line.
- **But:** no longer efficient at $n = \lambda!$
- At best: green line = 45 degree line.

• Prices partially stable and efficiency on blue line. **• But:** no longer run-proof. Runs may happen!

Conclusions

Two papers

- ¹ Theory of Cryptocurrency Pricing: **Schilling-Uhlig, "Some Simple Bitcoin Economics", JME 2019.**
- ² Central bank digital currencies: **Schilling Fernández-Villaverde - Uhlig, "CBDC: when Price and Bank Stability Collide".**

... but a lot more can and should be done! Wide-open canvas.

NINETY-SIXTH INTERNATIONAL **ATLANTIC ECONOMIC CONFERENCE**

5-8 OCTOBER 2023

